Package: GB2group 0.3.0
GB2group: Estimation of the Generalised Beta Distribution of the Second Kind from Grouped Data
Estimation of the generalized beta distribution of the second kind (GB2) and related models using grouped data in form of income shares. The GB2 family is a general class of distributions that provides an accurate fit to income data. 'GB2group' includes functions to estimate the GB2, the Singh-Maddala, the Dagum, the Beta 2, the Lognormal and the Fisk distributions. 'GB2group' deploys two different econometric strategies to estimate these parametric distributions, the equally weighted minimum distance (EWMD) estimator and the optimally weighted minimum distance (OMD) estimator. Asymptotic standard errors are reported for the OMD estimates. Standard errors of the EWMD estimates are obtained by Monte Carlo simulation. See Jorda et al. (2018) <arxiv:1808.09831> for a detailed description of the estimation procedure.
Authors:
GB2group_0.3.0.tar.gz
GB2group_0.3.0.zip(r-4.5)GB2group_0.3.0.zip(r-4.4)GB2group_0.3.0.zip(r-4.3)
GB2group_0.3.0.tgz(r-4.4-any)GB2group_0.3.0.tgz(r-4.3-any)
GB2group_0.3.0.tar.gz(r-4.5-noble)GB2group_0.3.0.tar.gz(r-4.4-noble)
GB2group_0.3.0.tgz(r-4.4-emscripten)GB2group_0.3.0.tgz(r-4.3-emscripten)
GB2group.pdf |GB2group.html✨
GB2group/json (API)
# Install 'GB2group' in R: |
install.packages('GB2group', repos = c('https://jordavuc.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:47adc1f2ef. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win | OK | Nov 12 2024 |
R-4.5-linux | OK | Nov 12 2024 |
R-4.4-win | OK | Nov 12 2024 |
R-4.4-mac | OK | Nov 12 2024 |
R-4.3-win | OK | Nov 12 2024 |
R-4.3-mac | OK | Nov 12 2024 |
Exports:fit.plotfitgroup.b2fitgroup.dafitgroup.ffitgroup.gb2fitgroup.lnfitgroup.sm
Dependencies:bootcontfraccubatureDBIdeSolveellipticGB2hypergeoineqlaekenlatticeMASSMatrixminpack.lmminqamitoolsnumDerivRcppRcppArmadillosurveysurvival